
Do Stock Markets Price Expected Stock Skewness?

New Evidence from Quantile Regression based Skewness Forecasts*

Kevin Aretz† Eser Arisoy‡

Manchester Business School Université Paris-Dauphine
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1 Introduction

Recent studies suggest that assets whose future returns are expected to be more positively

skewed have lower expected returns than assets whose future returns are expected to be less

positively skewed. The theoretical literature derives a negative relation between an asset’s

expected return and its expected skewness from models featuring endogenous investor beliefs

(Brunnermeier et al. (2007)), heterogeneity in investors’ skewness preferences (Mitton and

Vorkink (2007)), or prospect-theory preferences (Barberis and Huang (2008)). The empirical

literature finds a negative relation between proxies meant to capture the expected skewness of

stock returns over investors’ holding horizons (“expected stock skewness”) and the cross-section

of stock returns (Boyer et al. (2010); Bali et al. (2011); and Conrad et al. (2014)).

We offer further tests of how expected stock skewness relates to the cross-section of stock

returns. We do so because prior empirical work relies on somewhat adhoc proxies to capture

expected stock skewness. For example, Boyer et al. (2010) use an ordinary least-squares (OLS)

forecast of the realized skewness of daily returns. Conrad et al. (2014) use the fitted value

from a logit model predicting whether a stock has an above 100% future-return. Whether

such indirect proxies are well suited to capture expected stock skewness over the long horizons

that investors care about is neither theoretically obvious nor empirically shown.1

Our contribution to the literature is threefold. Our first contribution is to introduce a

methodology that allows us to generate expected stock skewness estimates over any conceivable

return interval. To implement the methodology, we run quantile regressions of the h month-

ahead return on a set of lagged predictor variables. Next, we calculate stock-specific estimates

of the first three return moments from the fitted regression values and then use them to

1Take Boyer et al.’s (2010) expected stock skewness proxy as example. Unless daily returns are identically
distributed, their proxy captures the average skewness of daily returns over the period over which realized
skewness is calculated. However, even if daily returns were identically distributed, skewness would still not
scale nicely with time unless daily returns were also independent. Thus, unless we also assume independence,
their proxy would not be informative about the skewness of long-ahead returns. This insight is problematic
because, ultimately, it is the skewness of long-ahead returns that long-term investors care about. It is precisely
for this reason that Neuberger (2012, p.3424) asks “why asset prices in an economy with well-capitalized
long-term investors should be heavily influenced by the characteristics of short-term returns.”
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calculate stock-specific skewness coefficients. In addition to being adaptable to different return

intervals, our methodology does not suffer from low precision due most stocks having short

time-series of non-overlapping low-frequency returns. Neither does it suffer from survivorship

bias because we are not forced to exclude stocks that are delisted over the quantile-regression

estimation period. Finally, the methodology relies on precisely estimated quantiles — and

not on imprecisely estimated means (see Koenker (2005) for the details).

We forecast the skewness of one month-, one year-, and five year-ahead stock returns. The

forecasts are derived from a limited set of fitted quantiles: the first, fifth, tenth, 25th, 50th, 75th,

90th, 95th, and 99th. The fitted quantiles are modeled as linear functions of a comprehensive

set of pre-determined firm fundamentals that prior literature suggests to be related to stock

skewness, as, for example, market size, historical volatility, and share turnover. Using rolling

window estimations, we ensure that the skewness forecasts could have been calculated in

calendar time. Preliminary tests suggest that the fitted quantiles of all but the longest-ahead

return are well calibrated. More specifically, we show that the proportions of future returns

that fall below the different estimated quantiles align with expectations. For example, around

10% of the one-year ahead future returns fall below the tenth-quantile estimate.

We also calculate a more naive, but well-known quantile-regression based skewness fore-

cast. This forecast is the distance between the third quartile and the median minus the

distance between the first quartile and the median, scaled by the distance between the two

outer quantiles (Kim and White (2004) and Konstaninidi and Pope (2015)).

Our second contribution is to compare the forecasting power of the quantile-regression

based skewness forecasts with those of the skewness forecasts used in the prior literature. While,

until only recently, it would have been hard to do so, Neuberger (2012) derives a realized

skewness estimator which is similar to the well-known realized volatility estimator studied

in, for example, Andersen and Bollerslev (1998). The similarity arises because the realized

skewness estimator also aggregates up high-frequency (daily) data to estimate realized skewness

over lower-frequency intervals. However, in contrast to the realized volatility estimator, the
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realized skewness estimator requires both stock data and option data as inputs. We seem to

be first in applying the realized skewness estimator to single stocks.

Using realized skewness as forecast target, we run unbiasedness tests, portfolio formation

exercises, and optimal forecast-combination regressions to compare forecasting power. The

quantile-regression based skewness forecast derived from the fitted moments comes out best

in all tests. The naive quantile-regression forecast does not accurately capture the skewness

of short-ahead returns, but does better in capturing the skewness of longer-ahead returns. Of

the skewness forecasts used in prior studies, Conrad et al.’s (2014) logit model prediction is a

strong contender to the moment-implied quantile-regression based skewness forecast. The

other skewness forecasts are often disappointing in capturing realized skewness.

As final contribution, we return to the question of whether expected stock skewness is

priced. We conduct portfolio formation exercises and Fama-MacBeth (1973) regressions using

the various skewness forecasts as pricing variables. We also use optimal or equally-weighted

combinations of the skewness forecasts, using only information available at the time to derive

the optimal combinations. Results show that the quantile-regression based forecasts are never

significantly priced. For example, the quintile portfolio of stocks with the highest values for

the moment-implied quantile-regression based twelve-month ahead forecast has an only 5.4%

lower mean return per annum than the quintile portfolio of stocks with the lowest values

(t-stat: –0.84). The skewness combinations also never attract significant premia.

Confirming prior work, some of the non-quantile-regression based skewness forecasts are

significantly priced. Boyer et al.’s (2010) realized skewness forecast is significantly negatively

priced, but only in tests in which observations are value-weighted. Bali et al.’s (2011) maximum

return is also significantly negatively priced, but only in tests in which observations are equally-

weighted. Due to our sample period omitting data from the 1960s and 1970s, Conrad et al.’s

(2014) logit model-based skewness forecast never attracts a significant premium.

Our work contributes to studies examining whether expected skewness is priced. Scott and

Horvath (1980) show that expected-utility investors with preferences that do not depend on
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wealth levels have a positive preference for odd moments (such as skewness) and a negative

preference for even moments. Because adding more assets to a portfolio can decrease expected

skewness, Simkowitz and Beedles (1978) and Conine and Tamarkin (1981) show that positive

skewness preferences can lead investors to hold under-diversified portfolios.

Nevertheless, expected returns do not necessarily depend on expected skewness. Rubinstein

(1973) shows that investors that care about skewness but no other higher moments choose

portfolios in such a way that expected asset returns are proportional to their covariances and

co-skewness with wealth. Assuming monetary separation,2 expected asset returns are also

proportional to their return covariances and co-skewness with aggregate wealth. Under these

assumptions, expected skewness does not play a role over and above co-skewness.

To establish expected skewness as separate pricing factor, monetary separation must not

hold. Mitton and Vorkink (2007) prevent monetary separation from holding by allowing for

heterogeneity in investors’ skewness preferences. Brunnermeier et al. (2007) and Barberis

and Huang (2008) prevent monetary separation from holding by using non-expected utility

preferences. However, not even under the assumptions in the above papers is expected skewness

always priced. For example, Barberis and Huang (2008) show that, unless the skewed asset in

their model is expected to be extremely skewed, a CAPM-type of equilibrium prevails. Thus,

whether investors price expected skewness is ultimately an empirical question.

Boyer et al. (2010), Bali et al. (2011), and Conrad et al. (2014) show that their proxies

for expected stock skewness are negatively related to the cross-section of stock returns. For

example, Boyer et al. (2010) report that the quintile portfolio holding the stocks with the

lowest values for their skewness forecast has a mean return of 1.189% per month, while the

quintile portfolio holding the stocks with the highest values has a mean return of 0.515% per

month. The spread is highly statistically significant. Using a skewness forecast derived from

2Monetary separation implies that investors’ optimal portfolios are a combination of the risk-free asset
and a portfolio of the risky assets. Cass and Stiglitz (1970) show that a sufficient condition for monetary
separation is that the ratio of the second derivative of investors’ utility functions with respect to wealth to
the corresponding first derivative is linear in wealth, with a homogeneous slope coefficient.
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the strike price and the assumption that the stock price is log-normal, Boyer and Vorkink

(2014) also find a negative skewness premium in the stock-options market.

Conrad et al. (2013) document that risk-neutral stock-skewness forecasts derived from the

methodology of Bakshi et al. (2003) are negatively related to stock returns. However, neither

Xing et al. (2010), who use the option smirk, nor Stilger et al. (2014), who follow Conrad et al.

(2013) in using Bakshi et al.’s (2003) methodology, are able to confirm these results. Instead,

they both report a positive relationship between the two variables. Even if expected risk-

neutral skewness were priced, it would not necessarily follow that expected (physical) skewness

is priced. For example, Rubinstein’s (1976) model suggests that an increase in the covariance

between an asset’s payoff and consumption (systematic risk) lowers risk-neutral skewness,

raises the expected return, but does not change the physical skewness. Thus, the pricing of

expected risk-neutral skewness could be a pure systematic-risk effect.

Our evidence should caution us to not prematurely accept the idea that stock markets

price expected skewness. Using quantile-regression based skewness forecasts that outperform

the forecasts used in studies empirically supporting a negative expected stock skewness-stock

return relationship, we fail to find any evidence suggesting such a relationship.

Our article is structured as follows. Section 2 describes how we use quantile regressions to

calculate skewness forecasts. It also offers details on Neuberger’s (2012) realized-skewness

methodology, gives an overview of the skewness forecasts used in prior studies, and describes

our data sources. Section 3 offers the forecast comparisons, the optimal combination tests,

and the asset pricing tests. Section 4 summarizes and concludes.
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2 Methodology & Data

2.1 The Quantile-Regression Based Skewness Forecasts

2.1.1 Methodology

Quantile regressions model the conditional quantiles of an endogenous variable using a linear

function of exogenous variables (Koenker and Bassett (1978); Koenker (2005); and Angrist

and Pischke (2009)). To see how this works, denote by F (y) the cumulative density function

of the random variable y. Also, denote by qτ (y) = inf{y : F (y) ≥ τ} random variable y’s τth

quantile, with 0 < τ < 1. The quantile regression model can then be written as:

qτ (yi)|Xi = X′iβτ , (1)

where yi is the ith observation of the endogenous variable, Xi is a vector of exogenous variables,

and βτ is a parameter vector. Equation (1) assumes that the exogenous variables exert a

locally monotonic effect on the quartile. To wit, raising the value of an exogenous variable

from, say, minus one to zero has the same effect as raising its value from zero to one. Despite

this restriction, quantile regression models generate flexible quantile estimates, owing to the

fact that the parameter vector βτ is allowed to vary over the modeled quantiles.

Defining the regression residual εi as yi −X′iβτ , an estimate of the parameter vector βτ

can be obtained by minimizing the following “tick”-loss function Lτ (εi):

Lτ (εi) = (τ1{εi ≥ 0}+ (1− τ)1{εi < 0})|εi| (2)

= (τ1{εi ≥ 0} − (1− τ)1{εi < 0})εi (3)

= (τ − 1{εi < 0})εi. (4)

where 1{εi ≥ 0} is an indicator function equal to one if εi ≥ 0 and else zero, and 1{εi < 0}

is defined accordingly. Conceptually speaking, minimizing Lτ (εi) estimates the τth quantile
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by assigning different penalties to overpredicting (εi < 0) and underpredicting (εi ≥ 0) the

endogenous variable. For example, if τ is 0.25, overestimating the endogenous variable is

three times more costly than underestimating it. To compensate, the model optimally chooses

the probability of an overprediction to be three times smaller than the probability of an

underprediction. In other words, optimality requires that 3×Prob(y > qτ (yi)|Xi) = Prob(y ≤

qτ (yi)|Xi). Thus, the optimal qτ (yi) is the conditional first quartile of yi.

In theory, we could estimate βτ by setting the directional derivatives of
∑

i Lτ (εi) with

respect to βτ to non-negative values. In practice, the problem is usually reformulated as:

minβτ ,un,vn{τ1′un + (1− τ)1′vn|ε = un − vn}, (5)

where ε is vector of residuals, and un and vn are vectors of slack variables. The slack variables

need to obey: (i) ui ≥ 0, (ii) vi ≥ 0, and (iii) ui × vi = 0. The new problem can be solved

using standard linear programming techniques (see Koenker (2005) for details).

The variance-covariance matrix of the βτ estimate, Vn, is calculated using:

Vn = ŝ2
ττ(1− τ)

(
n∑
i=1

XiX
′
i

)
, (6)

where ŝτ is equal to the inverse of an estimate of the value of the endogenous variable’s density

function evaluated at the τth quantile. The pseudo R-squared is given by one minus the sum

of the weighted regression-residuals derived from the fitted quantiles scaled by the sum of the

weighted regression-residuals derived from a quantile-regression model using only a constant

as exogenous variable. The weight applied to the residuals is equal to τ for positively valued

residuals, and it is equal to (1− τ) for negatively valued residuals.

As a next step, we transform the conditional fitted quantiles into moment estimates. To

do so, we order the fitted quantiles from lowest to highest and then collect them in the vector

Q̂(yi). We denote the jth element of Q̂(yi) by Q̂j(yi), where j = 1, . . . , J and J is the total

number of elements in the vector. Assuming that the endogenous variable y is uniformally
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distributed between two consecutive quantiles, it holds that:

Ê[yi|Q̂j−1(yi) ≤ yi < Q̂j(yi)] =
Q̂j−1(yi) + Q̂j(yi)

2
, (7)

Ê[y2
i |Q̂j−1(yi) ≤ yi < Q̂j(yi)] =

Q̂j−1(yi)
2 + Q̂j−1(yi)× Q̂j(yi) + Q̂j(yi)

2

3
, (8)

Ê[y3
i |Q̂j−1(yi) ≤ yi < Q̂j(yi)] =

Q̂j−1(yi)
3 + Q̂j−1(yi)

2 × Q̂j(yi) + Q̂j−1(yi)× Q̂j(yi)2 + Q̂j(yi)
3

4
,(9)

where Ê is an estimate of the expectation operator. Using an approximation to the law of

total probability, the unconditional expectations can be estimated from:

Ê[yni ] =
J∑
j=2

F−1(Q̂j(yi))− F−1(Q̂j−1(yi))

F−1(Q̂J(yi))− F−1(Q̂1(yi))
Ê[yni |Q̂j−1(yi) ≤ yi < Q̂j(yi)], (10)

where n is one, two, or three. Equation (10) approximates the integral over the conditional nth

moment defining the unconditional nth moment. However, because there is positive probability

mass below the lowest and above the highest fitted quantile, the approximation is rescaled

by F−1(Q̂J(yi))− F−1(Q̂1(yi)). Using the fitted moments obtained from Equation (10), we

calculate the moment-implied quantile-regression based skewness coefficient as:

QRSkewi = E

[(
yi − E[yi]

σy,i

)3
]

=
E[y3

i ]− 3E[yi]σ
2
y,i − E[yi]

3

(E[y2
i ]− E[yi]2)

3
2

, (11)

where σy,i is the standard deviation of yi, defined as (E[y2
i ]− E[yi]

2)
1
2 .

Kim and White (2004) and Konstantinidi and Pope (2015) use another approach to convert

the fitted quantiles obtained from quantile regressions into skewness coefficients. Using their

approach, the skewness coefficient is calculated as follows:

NaiveQRSkewi =
[(q̂75(yi)− q̂50(yi))− (q̂50(yi)− q̂25(yi))]

q̂75(yi)− q̂25(yi)
, (12)

where, for convenience, the equation omits the dependence of the quantiles on Xi.
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Prior work suggests that quantile regressions are well suited to fit stock return quantiles. For

example, Cenesizoglu and Timmermann (2008) show that quantile regressions produce efficient

forecasts of the conditional return density of the S&P 500, in-sample and out-of-sample. They

also show that the quantile-regression based forecasts contain useful information over and

above other variables. In particular, they significantly improve market timing- and option

investment-strategies relative to other S&P 500 stock-return density forecasts.

2.1.2 Implementation Details

We calculate the quantile-regression based skewness forecasts as follows. The endogenous

variable in the quantile regressions is the h-month ahead return. For example, when h = 12,

the endogenous variable is the return compounded over months t+ 1 to t+ 12. An exception

occurs when a stock is delisted between months t and t+ h. If this happens, the endogenous

variables is the return compounded up until (and including) the delisting month. Doing

so, the estimations do not exclude delisted stocks and thus avoid survivorship bias. In the

empirical tests, we set h equal to one, twelve (one year), and 60 (five years).

Following other studies, we forecast the skewness of total and idiosyncratic returns. To

calculate idiosyncratic returns, we run stock-specific time-series regressions of the stock’s

return on the market return minus the risk-free rate, SMB, HML, and MOM:

Ri,t = αi + βMKT
i,t (Rmkt,t − rf,t) + βSMB

i,t RSMB,t + βHML
i,t RHML,t + βMOM

i,t RMOM,t + εi,t, (13)

where Ri,t is the return of stock i in month t, Rmkt,t− rf,t is the market return minus the risk-

free rate, RSMB,t the return of a size spread portfolio, RHML,t the return of a book-to-market

spread portfolio, and RMOM,t is the return of a one-year past return spread portfolio. See

Kenneth French’s website for more details. αi, β
MKT
i,t , βSMB

i,t , βHML
i,t , and βMOM

i,t are free

parameters, and εi,t is the residual. We run the time-series regression over the prior 20 years

of monthly data for each stock with more than 60 months of data. We compound αi + εi,t
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over months t to t+ h and use it as endogenous variable in the regressions.

In line with Boyer et al. (2010), we include historical volatility, historical skewness, market

capitalization (“size”), the past return (“momentum”), share turnover, a NASDAQ dummy,

and industry dummies among the exogenous variables in the regressions. Harvey and Siddique

(2000), Chen et al. (2001), and Conrad et al. (2014) show that a higher Hist. Volatility predicts

a more positive future skewness, possibly due to it indicating the existence important growth

options or due to the limited-liability feature of stocks. Chen et al. (2001) document that a

worse past performance, as signalled by a lower Momentum value, predicts a more positive

future skewness. Hong and Stein (2003) report that a higher TradingVolume forecasts a more

negative future skewness. Boyer et al. (2010) add Size, NASDAQ, and the industry dummies,

presumably to control for differences between differently sized firms that are operating in

different industries and that are traded on different types of stock exchanges.

We add to the exogenous variables suggested by Boyer et al. (2010) the book-to-market

ratio, share issuances, accruals, asset growth, and profitability. Chen et al. (2001) report that

a lower BookToMarket value forecasts a more negative future skewness. The theoretical work

of Barberis and Huang (2008) suggests that higher ShareIssuances and AssetGrowth values

signal the existence of important growth options generating positive future skewness. Because

accounting conservatism implies that bad news are recognized on a timelier basis than good

news, firms following more conservative accounting practices tend to have lower Accruals

(earnings minus cash flows) and thus possibly more positively skewed future returns. Finally,

Campbell et al. (2008) and Conrad et al. (2014) show that a lower Profitability helps in

identifying financially distressed firms with more right skewed future returns.

We follow the above studies in constructing the exogenous variables. More details about

the construction of the exogenous variables is offered in Table A.1 in the Appendix.3

3Similar to Boyer et al. (2010), we do not winsorize the market variables used in the quantile regression
models. However, following Fama and French (2008), we winsorize the variables wholly or partially reliant on
accounting data, such as BookToMarket, ShareIssuance, Accruals, AssetGrowth, and Profitability. We also
winsorize the control variables used in the asset pricing tests. We always winsorize at the 0.5th and 99.5th
percentiles, using percentiles calculated separately by month.
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We estimate the quantile regressions using rolling windows of data. At the end of each

month t in our sample period, we extract the data over months t − 239 to t from our full

data sample. For each stock and each month t∗ within the rolling window (except the most

recent h months), we create the h month-ahead return by compounding a stock’s returns over

months t∗+ 1 to t∗+ h. We deal with stocks that are delisted between months t∗+ 1 to t∗+ h

as described above. We next estimate panel quantile regressions of the h month-ahead returns

on the exogenous variables measured in month t∗, fitting the first, fifth, tenth, 25th, 50th,

75th, 90th, 95th, and 99th quantiles of the h month ahead-return density.4 We combine the

regression estimates with the values of the exogenous variables at the end of the rolling window

(i.e., at the end of month t) to calculate the fitted quantiles. Using the fitted quantile, we then

calculate the quintile-regression based skewness forecasts. Thus, the skewness forecasts are

conditional on only information available to investors in month t. Also, they are constructed

to capture the skewness of a stock’s return over months t+ 1 to t+ h.

Our main tests consider the one-month (QRSkewt+1), one-year (QRSkewt+1,t+12), and five-

year ahead (QRSkewt+1,t+60) moment-implied quantile-regression based skewness forecasts

calculated from raw returns. They also investigate the naive counterparts of these forecasts

(NaiveQRSkewt+1, NaiveQRSkewt+1,t+12, and NaiveQRSkewt+1,t+60, respectively). In un-

reported tests, we further study the above six variables calculated from idiosyncratic returns

or Boyer et al.’s (2010) exogenous variables. Results are qualitatively unaffected.

2.1.3 Other Skewness Forecasts

Skewness forecasts used in the prior literature are often indirect forecasts that cannot easily

be tailored to returns calculated over different intervals. Boyer et al.’s (2010) skewness forecast

(OLSSkew) is the fitted value from a cross-sectional OLS regression of the realized skewness

of daily returns on firm fundamentals. The daily returns span the period from months t+ 1 to

4Adding more extreme quantiles (e.g., the 0.1th and 99.9th quantiles) does not add to forecasting power,
probably because the more extreme quantiles are estimated with very low precision.

11



t+ 60. The firm fundamentals include the variables referred to above and are observed at the

end of month t. Boyer et al. (2010) combine the regression results with the firm fundamental

values in month t+ 60 to forecast skewness over the period starting with month t+ 61.

Conrad et al. (2014) analyze the fitted value from a logit regression of a dummy variable

equal to one if a stock’s return over months t+ 1 to t+ 12 exceeds 100% and else zero, on

firm fundamentals measured in month t (LogitSkew). In line with us, they include historical

volatility, historical skewness, market size, momentum, and share turnover among the firm

fundamentals.5 In addition, they use sales growth, company age, and asset tangibility. Sales

growth is the log of the ratio of current sales to one-year lagged sales; age is the number of

years since a stock first appeared in CRSP; and asset tangibility is the ratio of gross property,

plant, and equipment to total assets.6 The logit model is estimated over recursive windows

starting with June 1951 and ending with June of year t− 12. The model only considers June

observations. The logit estimates are combined with the values of the firm fundamentals from

June of year t to May of year t+ 1 to capture stock skewness over the next twelve month.

Bali et al. (2011) use a stock’s maximum daily return during month t− 1 to capture its

propensity to produce a lottery-like (and thus right skewed) future return (MaxSkew).

Another possible skewness forecast is a stock’s historical skewness, calculated using either

daily or even higher frequency data over some past period (HistoricalSkew). However, because

Harvey and Siddique (1999) find that skewness is not persistent over time, only few studies

use historical skewness to forecast future skewness.7 We use historical skewness calculated

from daily data over the prior month to complement the other skewness forecasts.

We follow Boyer et al. (2010), Bali et al. (2011), and Conrad et al. (2014) in calculating

5However, different from us, they calculate skewness and volatility using returns centered around zero and
over months t− 2 to t, and they use log returns in their skewness calculations. Also, they calculate share
turnover as the average past six-month turnover minus the average past 18-month turnover.

6Conrad et al. (2014) winsorize all continuous analysis variables at the fifth and 95th percentiles. Somewhat
surprisingly, Boyer et al. (2010) do not indicate that they winsorize their analysis variables.

7An exception is Amaya et al. (2015), who calculate historical stock skewness from intra-day data. They
show that their variable is negatively related to next week’s stock return, but do not offer evidence that the
negative relationship arises because intra-day historical skewness forecasts future skewness.
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their skewness forecasts. Consistent with the quantile-regression based skewness forecasts,

their forecasts also only rely on data available to investors in calendar time.

2.2 Neuberger’s (2012) Realized Skewness

2.2.1 Methodology

Assuming that stock prices are martingales, Neuberger (2012) shows that an estimate of the

realized skewness of a stock’s log return can be obtained from:

RealizedSkewt,t+T =

∑T
t=1

(
3∆υE(t)(e∆s(t) − 1) +K(∆s(t))

)(∑T
t=1 2(e∆s(t) − 1−∆s(t))

)3/2
, (14)

where K(∆s(t)) = 6(∆s(t)e∆s(t) − 2e∆s(t) + ∆s(t) + 2), ∆s(t) is the change in the log stock

price from period t− 1 to t, and ∆υ(t) is the change in the stock’s “entropy variance” from

period t− 1 to t. The stock’s entropy variance in period t, υEt , is defined as:

υEt = Et[2(sT − st)e(sT−st) − e(sT−st) + 1], (15)

where Et is the expectation operator conditional on period t information, and st is the log

stock price in period t. Using the insight that any financial claim can be replicated using a

portfolio of plain-vanilla options, we can write υEt as:

υEt =

∫ F

K=0

2P (K)

FK
dK +

∫ ∞
K=F

2C(K)

FK
dK, (16)

where C(K) and P (K) are, respectively, the values of plain-vanilla European call and put

options with strike price K and an invariant maturity date, and F is the price of a forward

contract with the same maturity date as the options (Carr and Wu (2007, 2009)).

When stock prices are not martingales, the realized skewness in Equation (14) is upward

biased (downward biased) if the stock price is positively (negatively) correlated with the
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variance risk premium. The expected bias can be written as:

6E

[
T−1∑
u=1

T−1∑
t=u

(
∆E(u)−∆0(t)∆S(u)

S0

∆S(t+ 1)

St
+

∆S(u)

S0

∆Et+1 −∆(t)∆S(t+ 1)

St

)]
, (17)

where ∆E(u) is the change in the value of an entropy contract from period u− 1 to u, where

the “entropy contract” pays ST lnST at maturity, ∆S(u) is the change in the stock price from

period u− 1 to u, St is the stock price in period t, and ∆(t) = 1 + lnSt + 1
2
υEt .

Neuberger’s (2012) realized skewness captures the skewness of log returns. In contrast, the

quantile-regression skewness based forecasts capture the skewness of discrete returns. Thus,

even if the quantile-regression based skewness forecasts have a high forecasting power, we still

expect their mean levels to exceed those of the realized skewness estimates. Notwithstanding,

since the skewness of discrete returns is strongly positively correlated with the skewness of log

returns in the cross-section,8 we still expect the quantile-regression based skewness forecasts

to accurately predict a stock’s ranking according to realized skewness if the forecasting power

of the quantile regression-based skewness forecasts is high.

2.2.2 Implementation Details

We use daily stock and option data to calculate RealizedSkew. Because there are no Euro-

pean options on single stocks, we are forced to use American options to estimate a stock’s

entropy variance. While this choice is inconsistent with Equation (16), we mitigate resulting

inaccuracies by selecting American options with a relatively short time-to-maturity (and thus

a low early-exercise premium). In particular, we use options whose time-to-maturity is closest

to, but exceeds two weeks. We eliminate stock option-day observations with fewer than 20

strike prices, and stock options with less than one year of data. We use a cubic regression

model of implied volatility on strike prices and time-to-maturities to smooth the implied

8For example, we find a mean cross-sectional correlation of 0.97 between the skewness of discrete daily
returns and the skewness of log daily returns in CRSP data between 1963 to 2010.
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volatility surface. The model coefficients are estimated on a weekly basis. We winsorize the

implied volatility estimates at the first and 99th percentiles, calculated by date.

We approximate the integral in Equation (16) using:

υEt ≈
n∑
i=1

2P (Ki)

FKi

(Ki −Ki−1) +
2P (Kn+1)

FKn+1

(F −Kn)

+
2C(Kn+1)

FKn+1

(Kn+1 − F ) +
m∑

i=n+2

2C(Ki)

FKi

(Ki −Ki−1), (18)

where 0 = K0, K1, K2, . . . , Kn, F,Kn+1, . . . , Km is a set of prices ranked in ascending order,

with Ki being a strike price and F the forward price. We calculate the forward price as the

stock price multiplied by the exponential of the risk-free rate of return times the time-to-

maturity. We use the smoothed implied volatilities derived above to calculate the sum from

the lowest to the highest available strike price, using the step sizes found in the data. We

use the implied volatility of the option with the lowest (highest) available strike price to

approximate the sum up to (starting from) this strike price, choosing the distance between

the two lowest (highest) available strike prices as step size. Plugging the daily stock return

and the daily change in υEt into Equation (14), we obtain realized skewness estimates. We

calculate realized skewness over the next one month, one year, and five years.

2.3 Data Sources

Market variables are from CRSP and accounting variables from COMPUSTAT. Option data

are from OptionMetrics. Data on the market return, SMB, HML, and MOM are from Kenneth

French’s website.9 OLSSkew is from Brian Boyer’s website.10 Our tests exclude stocks from

the financial (SIC codes: 6000-6999) and utilities industry (4900-4949). We also exclude stocks

9The URL address is: <http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/>. We thank Eugene
Fama and Kenneth French for making their data available.

10The URL address is: <http://marriottschool.net/emp/boyer/>. Although the sample period studied in
their paper is December 1987 to December 2007, the data available from Brian Boyer’s website extends to
December 2010. We thank Brian Boyer and his co-authors for making their data available.
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with a negative book value or a price below $1 in month t−1. We use data over the 1968-2010

period to estimate the quantile regression models. However, following Boyer et al. (2010), we

run the asset pricing tests over the December 1987 to December 2010 period.

3 Empirical Results

3.1 Quantile Regression Estimates

3.1.1 Coefficient Estimates and Fitted Quantiles

Table 1 shows the results of quantile regressions fitting the first, fifth, tenth, 25th, 50th, 75th,

90th, 95th, and 99th quantiles of stocks’ one-month ahead returns. The quantile regressions

are estimated over all 20-year windows whose final month lies in the December 1987-December

2010 period. For each fitted quantile and exogenous regression variable, the table reports the

mean coefficient (in bold) and the fraction of coefficients that are statistically significant at

the 90% confidence level or better over the estimation windows (in parenthesis). For each

fitted quantile, it also reports the mean R-squared. Quantile regressions of returns measured

over different intervals (e.g., over the next one or five years) produce results similar to those

in Table 1. For the sake of brevity, we thus do not report their results.

Table 1 suggests that most firm fundamentals help in explaining the density of stocks’ one-

month ahead returns. Particularly powerful are Hist. Volatility, Size, Momentum, Profitability,

and Turnover, which attract significant coefficients in all nine quantile regression models over

(almost) all estimation windows. BookToMarket, ShareIssuances, and AssetGrowth are more

important for fitting the left tail of the return density, while Accruals is more important

for fitting its body (i.e., returns around the median). Neither Hist. Skew nor NASDAQ play

pivotal roles. Mean R-squareds range from zero to close to 20%. In line with Cenesizoglu and

Timmermann (2008), mean R-squareds are larger for the models fitting the outer-quantiles,

suggesting it is easier to fit the tails than the body of the return density.
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Looking at how each exogenous variable’s coefficients vary over the nine quantile regression

models reveals interesting patterns, hinting at the variable’s association with skewness. As an

example, the coefficients of Hist. Volatility increase monotonically over the fitted quantiles,

rising from 3.6 for the first quantile to 10.1 for the 99th quantile. As a result, an increase in

Hist. Volatility increases the higher quantiles more than the lower quantiles, generating more

right skewness. In comparison, decreases in Size, BookToMarket, or Profitability or increases

in Turnover produce outward shifts both in the left tail and in the right tail. However, in

case of Size and Profitability, the effect on the right tail dominates the effect on the left tail,

generating more right skewness. In case of BookToMarket and Turnover, the effect on the left

tail dominates the effect on the right tail, generating more left skewness.

To further examine how the firm fundamentals are related to expected stock skewness,

Figure 1 plots the fitted one-month ahead return densities of the average stock in several

extreme firm-fundamental deciles (one and ten). The average stock’s firm-fundamental values

are calculated by averaging the firm fundamentals first by decile and month and then by decile

alone. We combine the average stock’s firm-fundamental values with the mean coefficients in

Table 1 to construct the stock’s return density. Small and unprofitable stocks have extremely

right skewed returns. Value stocks with a lot of share issuances or a low asset growth also

have right skewed returns, but to a somewhat lesser degree. Given small and value stocks’

extremely right skewed returns in Figure 1, their tendency to produce high future returns

would be surprising if expected stock skewness were negatively priced.

3.1.2 Calibration of the Fitted Quantiles

As a next step, we investigate how well the fitted quantiles of the one-month, one-year, and

five-year ahead return are calibrated. For each fitted quantile, we thus calculate the fraction

of future returns that lie below the fitted quantile. If the fitted quantiles are well calibrated,

we expect the fraction to be close to τ . For example, when looking at the fifth quantile of

the one-year ahead return, we expect about 5% of the returns over months t+ 1 to t+ 12
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Figure 1. Quantile-Regression Implied Return Densities The figure shows the quantile-regression
implied one-month ahead return densities for the average stock in extreme firm-fundamental deciles. The firm
fundamentals are Size (Panel A), BookToMarket (Panel B), Momentum (Panel C), ShareIssuances (Panel D),
AssetGrowth (Panel E), and Profitability (Panel F). The firm fundamental values of the average firm are
calculated by averaging firm fundamentals first by month and decile and then by decile alone. We use the
quantile regression estimates reported in Table 1 to calculate the fitted quantiles.

to lie below the fitted fifth quantile estimated using only data up to month t if the quantile

is well calibrated. Because the densities of small, growth, and illiquid stocks may be harder

to forecast than those of others, we run the calibration exercise on the full sample, but also

on subsamples containing small, growth, and illiquid stocks. Small and growth stocks are

those with a market size and book-to-market ratio in the bottom quartile in month t− 1,

respectively; illiquid stocks are those with an Amihud (2002) illiquidity proxy value in the

top quartile in the same month (see Table A.1 for details about the illiquidity proxy).

Table 2 shows that the shorter-ahead return densities of the stocks in the full sample are

well calibrated. For example, 1.1% of the full-sample one-month ahead returns are below the

first quantile, whereas 99.1% of them are below the 99th quantile. While the densities of

small and growth stocks are also well calibrated, the lower tail estimates of illiquid stocks

can be slightly off-target. To wit, 12.1% of the one-month ahead returns of illiquid stocks lie
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below the tenth quantile. Raising the interval over which returns are calculated deteriorates

calibration. Most strikingly, only 82.8% of the five-year ahead returns are below the 99th

quantile. We speculate that the worse calibration could possibly be an artefact of longer-ahead

returns being more non-normally distributed than shorter-ahead returns.

The good calibration of the fitted quantiles of the shorter-ahead returns render us optimistic

that the moment-implied quantile-regression skewness forecasts for the same returns are also

well calibrated. We turn to the skewness forecasts in the next subsection.

3.2 Comparison of Stock Skewness Forecasts

3.2.1 Descriptive Statistics and Correlations

Table 3 offers descriptive statistics for realized skewness, the quantile-regression based skewness

forecasts, and the other skewness forecasts. Since we require option data to calculate realized

skewness, Panel A reports descriptive statistics for the subsample of stocks with option

contracts written on them. In contrast, Panel B reports descriptive statistics for the full

sample of stocks, for all variables mentioned above except realized skewness.

Starting with the subsample of stocks with option contracts, we find that the mean value

of RealizedSkew is negative, but increases with the length of the return interval (Panel A). For

example, the mean realized skewness of the one-month ahead return is –0.69, while the mean

realized skewness of the five-year ahead return is –0.06. Consistent with the observation

that the realized skewness estimates capture the skewness of log returns, while the quantile-

regression based forecasts capture the skewness of discrete returns, the mean values of QRSkew

and NaiveQRSkew exceed the mean values of RealizedSkew. Nonetheless, identical to the

realized skewness estimates, they also increase with the length of the return interval, from

0.22 for the one-month ahead return to 2.21 for the five-year ahead return. The only other

direct forecast of skewness, OLSSkew, also attracts a positive mean value.11 Looking at the

11Because LogitSkew, HistoricalSkew, and MaxSkew are indirect skewness forecasts, their mean values are
not informative about whether stock returns are positively or negatively skewed.
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full sample, we obtain similar descriptive statistics, suggesting that the subsample of stocks

with option contracts is representative of the full sample (Panel B).

Table 4 shows the mean cross-sectional correlations between the above variables, calculated

using either stocks with option contracts (above diagonal) or all stocks (below diagonal). The

table yields the following conclusions: First, the moment-implied quantile-regression based

skewness forecasts are always more positively correlated with realized skewness than the

other forecasts, possibly hinting at a higher forecasting power. Second, the moment-implied

quantile-regression based forecasts are often only weakly correlated with the corresponding

naive forecasts (correlations between 0.24 and 0.89). Third, the moment-implied quantile-

regression based skewness forecasts are only weakly correlated with OLSSkew, HistoricalSkew,

and MaxSkew (correlations between 0.11 and 0.61), but more strongly with LogitSkew (corre-

lations close to 0.75). Finally, the correlation between each forecast and realized skewness

increases with the interval over which realized skewness is measured. The last observation

could be interpreted as suggesting that all forecasts capture the skewness of long-ahead re-

turns. Notwithstanding, we believe a more plausible explanation is that longer-ahead realized

skewness is estimated with greater precision than shorter-ahead realized skewness.

3.2.2 Horse Races

We perform two tests to compare the ability of the skewness forecasts to forecast realized

skewness. In the first test, we run cross-sectional regressions of RealizedSkew on each skewness

forecast (“unbiasedness test”). The regression model is given by:

RealizedSkew = α + βSkewnessForecast+ ε, (19)

whereRealizedSkew ∈ {RealizedSkewt+1, RealizedSkewt+1,t+12, RealizedSkewt+1,t+60}, and

SkewnessForecast ∈ {QRSkew,NaiveQRSkew,OLSSkew, LogitSkew,HistoricalSkew,

MaxSkew}. α and β are parameters, and ε the residual. Using one of the quantile-regression
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based forecasts as exogenous variable, we match the return interval used to create the fore-

cast with the return interval underlying RealizedSkew. So, for example, we regress Realized-

Skewt+1,t+60 on QRSkewt+1,t+60. Because it is unclear over which return interval the other

forecasts predict skewness, we regress each RealizedSkew variable on them. We expect a less

biased forecast to produce a constant closer to zero and a slope coefficient closer to one. In

addition, we expect a more efficient forecast to produce a higher R-squared, signalling a

higher correlation between realized skewness and the skewness forecast.

Table 5 shows the mean values of the constants and slope coefficients obtained from

estimating cross-sectional regression (19) over our sample period. It further shows mean R-

squareds and their rank. Panels A, B, and C use RealizedSkewt+1, RealizedSkewt+1,t+12, and

RealizedSkewt+1,t+60 as endogenous variables, respectively. Results show that all skewness

forecasts are far from being unbiased forecasts of realized skewness. For example, the mean

constant and slope coefficient estimates obtained from the regression of RealizedSkewt+1 on

QRSkewt+1 are –0.75 and 0.45, respectively (Panel A). The higher mean levels of QRSkew

compared to those of RealizedSkew are likely to result from QRSkew capturing the skewness

of discrete returns, while RealizedSkew captures the skewness of log returns.

Mean R-squareds suggest that the moment-implied quantile-regression based forecasts

are the strongest predictors of realized skewness. For example, QRSkewt+1,t+60 explains an

average of 4.2% of the variations in RealizedSkewt+1,t+60, which is 1.1% percentage points

higher than the second best-performing forecast (Panel C). In contrast, NaiveQRSkew only

performs well in forecasting the two longer-ahead realized skewness variables, but not the

shortest-ahead one. Of the skewness forecasts used in the prior literature, LogitSkew is a strong

contender of QRSkew. While LogitSkew is calculated from one-year ahead returns, its mean R-

squared is closest to the mean R-squared of QRSkew in models fitting RealizedSkewt+1 (0.8%

vs. 0.9%; Panel A). In absolute terms, LogitSkew also performs well in predicting longer-ahead

realized skewness. However, in relative terms, QRSkew significantly outperforms LogitSkew

in capturing the skewness of one-year ahead returns (R-squareds 2.4% vs. 3.3%; Panel B) or
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five-year ahead returns (R-squards 3.1% vs.4.2%; Panel C). Neither OLSSkew, HistoricalSkew,

nor MaxSkew are strong predictors of realized skewness over any return interval.

In the second test, we sort stocks into quintile portfolios according to the values of

the skewness forecasts in month t − 1. We then calculate the realized skewness of the

portfolios starting from month t. To do so, we first average realized skewness by portfolio

and portfolio formation month and then by portfolio alone. We also calculate the difference

in realized skewness across the extreme portfolios plus the rank of the difference. Table 8

shows the results, with panels A, B, and C using RealizedSkewt+1, RealizedSkewt+1,t+12, and

RealizedSkewt+1,t+60 as realized skewness variable, respectively. Sorting stocks into portfolios

according to the quantile-regression based forecasts, we again match the return interval used

to create QRSkew with the return interval used to create RealizedSkew. In contrast, sorting

stocks according to the other forecasts, we use each of the RealizedSkew variables.

The results derived from the portfolio formation exercises align with those derived from

the unbiasedness regressions. The moment-implied quantile-regression based forecasts always

produce the largest spread in realized skewness across the extreme portfolios. Only when

forecasting skewness over short horizons can MaxSkew sometimes become a strong contender

(Panel A). Only when forecasting skewness over long horizons can the naive quantile-regression

based forecasts and LogitSkew become strong contenders (Panel C).

3.2.3 Optimal Forecast Combinations

As a next step, we form optimal combinations of the skewness forecasts. In doing so, we first

transform each cross-section of realized skewness values and skewness forecast values into

standard normal variables. We do so because we are interested in the forecasts’ ability to

correctly rank stocks according to their realized skewness, and not in their ability to exactly

fit realized skewness. Also, unless we standardize variables, the indirect forecasts would be at

a disadvantage in fitting realized skewness compared to the direct forecasts.

We follow Bates and Granger (1969) and Granger and Ramanathan (1984) in optimally
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combining forecasts. In particular, we calculate the optimal combination weights from the

following cross-sectional non-linear least squares (NLS) regression:

RealizedSkew =
1

1 +
∑

k e
βk
QRSkew +

K∑
k=1

(
eβk

1 +
∑

k e
βk
SkewnessForecastk

)
+ ε, (20)

where RealizedSkew ∈ {RealizedSkewt+1, RealizedSkewt+1,t+12, RealizedSkewt+1,t+60},

and QRSkew is the moment-implied quantile-regression based skewness forecast calculated

from the same return interval as RealizedSkew is. SkewnessForecastk ∈ {OLSSkew, Logit-

Skew,HistoricalSkew,MaxSkew}. βk is a regression parameter, ε the residual, and K the

number of other forecasts used in the regression. The optimal weight of the quantile-regression

based forecast is 1
1+

∑
k e

βk
; the optimal weights of the others are eβk

1+
∑
k e

βk
. The optimal weights

are restricted to lie between zero and one and to sum up to one.

Table 7 shows the mean values (Panel A), median values (Panel B), and interquartile

ranges (Panel C) of the optimal weights obtained from regression (20). The moment-implied

quantile-regression based forecasts are always associated with higher mean (or median) optimal

weights than the other skewness forecasts. This result holds independent of whether we let

them compete with one other forecast or with all others. For example, when using all skewness

forecasts to forecast RealizedSkewt+1,t+60, QRSkew is associated with a mean (median)

weight of 29% (30%), while no other forecast is associated with a mean (median) weight

above 24% (24%). Despite this, all forecasts — not only QRSkew — contribute to correctly

ranking stocks according to realized future skewness. For example, in the models including all

skewness forecasts, no forecast ever has a mean or median weight below 9%. Also noteworthy

is that the optimal weights are relatively stable over the sample period, with the interquartile

ranges of the QRSkew, OLSSkew, and MaxSkew weights never exceeding 10%.

Figure 2 plots the twelve-month moving average weights from the combination regression

including QRSkewt+1,t+12 and all other forecasts.12 It confirms that the weights associated

12Figures showing the estimates of the other combination regressions produce qualitatively similar conclu-
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Figure 2. Optimal Combination Weights The figure shows twelve-month moving averages of the optimal
combination weights obtained from cross-sectional regression (20), using RealizedSkewt+1,t+12 as endogenous
variable and QRSkewt+1,t+12 (Panel A), OLSSkew (Panel B), LogitSkew (Panel C), MaxSkew (Panel D),
and HistSkew (Panel E) as exogenous variables. The regressions are run over all months in our sample period
for which we are able to calculate RealizedSkewt+1,t+12 over the subsequent twelve months (January 1997
to December 2010). The grey-shaded bars in the figure indicate NBER-defined recession periods.

with the quantile-regression based skewness forecasts do not change much over time. Neither

do those associated with OLSSkew and MaxSkew. Surprisingly, the weight associated with

LogitSkew oscillates around a level of 15%, with little evidence to suggest that the economic

state drives the variations. Finally, the weight associated with MaxSkew markedly decreases

over time, with it frequently being equal to zero over the 2005–2010 period.

Overall, the tests in this subsection suggest that the moment-implied quantile-regression

based skewness forecast are more accurate predictors of realized skewness than the other skew-

ness forecasts. Notwithstanding these conclusions, they also suggest that the other skewness

forecasts often possess important incremental information.

sions. In the interest of brevity, we thus omit them.
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3.3 The Pricing of Expected Stock Skewness

We now return to the question of whether stock markets price expected skewness. In doing so,

we sort stocks into quintile portfolios according to their month t− 1 values of the skewness

forecasts. The first quintile portfolio contains the stocks with a low expected skewness; the

fifth contains the stocks with a high expected skewness. We value-weight the portfolios and

hold them over month t.13 We also form a spread portfolio that is long on the highest quintile

portfolio and short on the lowest (“5-1”). In addition to mean portfolio returns, we also

calculate Hou et al.’s (2014) Q-factor model alpha and Fama and French’s (2015) five-factor

model alpha for the spread portfolios. We obtain the alphas from time-series regressions of

the spread portfolio’s return on the appropriate benchmark factors.14

Table 8 reports the results of the portfolio formation exercises. Plain numbers are risk

premia estimates, while numbers in square parentheses are t-statistics.15 Neither the moment-

implied (Panel A) nor the naive quantile-regression based forecasts (Panel B) are ever statically

or economically significantly related to stock returns. For example,QRSkewt+1,t+12 produces a

risk premium estimate of –0.45% per month (t-stat: –0.84). While the signs of the risk premia

estimates obtained from the two shorter-ahead forecasts are negative and thus consistent

with prior empirical work, the longest-ahead forecasts always produce positive estimates. This

result is noteworthy because long-term investors are expected to care most about skewness

over long-term (and not short-term) future horizons. Correcting for the Q-theory or Fama

and French (2015) factors does not materially change our conclusions.

Turning to the skewness forecasts used in the prior literature (Panel C), our results confirm

those in Boyer et al. (2010). To wit, OLSSkew produces a significantly negative risk premium

13Using equal weights instead of value weights does not change our conclusions. Thus, we do not report the
results from the equally-weighted portfolios, but make them available upon request.

14We thank Lu Zhang for sending us their benchmark factor data (the excess market return and the returns
of a size spread portfolio, an investment spread portfolio, and a profitability spread portfolio). We thank
Kenneth French for making their benchmark factor data (the excess market return and the returns of a size
spread portfolio, a book-to-market spread portfolio, an investment spread portfolio, and a profitability spread
portfolio) available on his website (mba.tuck.dartmouth.edu/pages/faculty/ken.french/).

15We always calculate t-statistics using Newey and West’s (1987) formula with a lag length (l) of twelve.
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of –0.70% per month (t-stat: –2.02). However, deviating from Bali et al.’s (2011) and Conrad

et al.’s (2014) results, LogitSkew and MaxSkew do not produce significantly negative risk

premia. Our risk premium estimate for LogitSkew differs from the one reported in Conrad et al.

(2014) because we study a more recent sample period. Using their sample period (1972–2009),

we find that LogitSkew has a significantly negative premium of –0.73 (t-stat: –2.24). Our risk

premium estimate for MaxSkew differs from the one reported in Bali et al. (2011) because

we value-weight stocks, while they equally-weight them. Using equal weights, we find that

MaxSkew has a moderately significantly negative premium of –0.82 (t-stat: –1.82).

Table 9 shows the results from portfolio formation exercises, using the optimal forecast

combinations as sorting variable. The column labels indicate the quantile-regression based

forecast used in the combination; the rows labels indicate the other forecast(s). Except in the

row labeled “all (equal-weights),” we create the combination forecasts using weights obtained

from cross-sectional regression (20), using standardized realized skewness over months t−60 to

t−1 as endogenous variable and the standardized skewness forecasts at the end of month t−61

as exogenous variables. We combine the weights with the skewness forecast values in month

t− 1. The combination forecasts in the row labeled “all (equal-weights)” are equally-weighted

averages of the (standardized) skewness forecasts. The table shows that no skewness forecast

combination ever produces a significant risk premium. This conclusion holds independent of

the realized skewness variable used to construct the skewness forecast combination or whether

or not we adjust for the Q-theory or Fama-French five-factor model factors.

Table 10 shows the results from Fama-MacBeth (1973) regressions of stock returns on the

skewness forecasts and control variables. Bold numbers are monthly risk premia estimates,

whereas numbers in parentheses are t-statistics. As control variables, we use the MarketBeta,

Size, BookToMarket, Momentum, AssetGrowth, Profitability, and Volatility.16 Supporting our

former findings, the quantile-regression based skewness forecasts never produce significant

risk premia. However, in contrast to before, OLSSkew also no longer produces a significantly

16We describe the construction of the controls in Table A.1.
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negative risk premium, while MaxSkew does. Given that Fama-MacBeth (1973) regressions

equally-weight observations, it appears that the significantly negative risk premium of OLSSkew

reported above is largely driven by larger stocks, while the significantly negative risk premium

of MaxSkew reported in the current tests is mostly driven by smaller stocks.17 The control

variables produce slope coefficient estimates consistent with the prior literature.

Table 11 repeats the Fama-MacBeth (1973) regressions, using the skewness forecast

combinations as exogenous variables. Consistent with Table 9, the column labels indicate

the quantile-regression based forecast used in the combination; the rows indicate the other

forecast(s). To save space, the table only reports the risk premium estimates of the combina-

tions. In accordance with our former results, no combination ever produces a significant risk

premium. While the pattern is not significant, risk premia estimates again increase with the

length of the return interval over which expected skewness is calculated.

Overall, the tests in this subsection produce little evidence suggesting that stock markets

negatively price expected stock skewness.

4 Conclusion

We propose an efficient and unbiased estimator of the skewness of a stock’s return. The

estimator can be used to forecast the skewness of stock returns calculated over any conceivable

return interval. To implement the estimator, we perform quantile regressions fitting stocks’

future return quantiles. Using the fitted quantiles, we calculate forecasts of a stock’s future

return skewness. We use Neuberger’s (2012) realized skewness to benchmark the quantile-

regression based skewness forecasts with other popular skewness forecasts used in the literature.

Results suggest that the quantile-regression based skewness forecasts strongly dominates the

other skewness forecasts, with the possible exception of Conrad et al.’s (2014) logit-model

based forecast. Finally, we use the quantile-regression based skewness forecasts and various

17Unreported equally-weighted portfolio formation exercises confirm this claim (available upon request).
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combinations of alternative skewness forecasts as pricing factors in asset pricing tests. Results

fail to suggest that stock markets price expected skewness, casting doubt on a growing

empirical literature suggesting that expected stock skewness is negatively priced.
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Table A.1
Variable Construction
The table shows information on the analysis variables. The first column gives the variables’ mnemonics. The second column gives
their full names. In the third column, we outline how we calculate the variables. Panel A contains the skewness forecasts and the
realized skewness proxy, Panel B the variables used to construct the quantile regression-based skewness forecast, and Panel C
other analysis variables. Where applicable, we show the COMPUSTAT data item number in parentheses.

Mnemonic Name Description

Panel A: Skewness proxies

RealizedSkew Neuberger (2012)
Realized Skewness

Realized skewness calculated from daily stock return and option data over various
future periods.

QRSkew/
NaiveQRSkew

Quantile
Regression-Based
Skewness Forecasts

Skewness forecasts derived from quantile regressions of future returns on lagged firm
characteristics.

OLSSkew Boyer et al. (2010)
OLS Skewness
Forecast

Skewness forecast derived from cross-sectional OLS regressions of realized future
skewness calculated from daily returns over the next 60 months on lagged firm
characteristics.

LogitSkew Conrad et al. (2014)
Logit Skewness
Forecast

Skewness forecast derived from logit models of a dummy variable equal to one if the
return over the next twelve months exceeds 100

MaxSkew Bali et al. (2014)
Skewness Forecast

Maximum daily return over the prior one month.

HistoricalSkew Historical Skewness Realized skewness calculated from daily return data over the past 60 months.

Panel B: Firm characteristics

Hist.Volatility Historical volatility Stock return volatility calculated using daily return data over the past 60 months.

Hist.Skew Historical skewness Stock return skewness calculated from daily return data over the past 60 months.

Size Market capitalization Log of share price times number of common shares outstanding.

BookToMarket Book-to-market ratio Log of the ratio of book value of equity at the end of fiscal year t-1 to the market
value of equity at the same time: the book value of equity is total assets (6) for year
t-1, minus liabilities (181), plus balance sheet deferred taxes and investment tax
credit (35), minus preferred stock liquidating value (10) or redemption value (56),
or carrying value (130). Market equity is given by Size.

Momentum Stock Return
Momentum

Log of gross return continuously compounded over months t-12 to t-2.

ShareIssue Net stock issues Log of split-adjusted shares outstanding at fiscal year end in t-1 divided by split
adjusted shares outstanding at fiscal year end in t-2; the split adjusted shares
outstanding is shares outstanding (25) times the adjustment factor (27).

Accruals Accruals Change in operating working capital per split-adjusted share from t-2 to t-1,
divided by book equity per split-adjusted share at t-1. Operating working capital is
current assets (4) minus cash and short-term investments (1) minus current
liabilities (5) plus debt in current liabilities (34).

AssetGrowth Asset growth Log of the ratio of assets per split-adjusted share at fiscal year end in t-1 divided by
assets per split-adjusted share at fiscal year end in t-2.

Profitability Profitability Equity income in t-1 (18) minus dividends on preferred stock in t-1 (19) plus
deferred taxes in t-1 (50) divided by book value of equity at t-1.

Turnover Share turnover Average daily turnover over the most recent month.

NASDAQ NASDAQ dummy
variable

Dummy variable equal to one if a share trades on the NASDAQ, else zero.

Panel C: Additional variables

MarketBeta Conditional market
beta

Market beta estimated using a regression of the stock return on the excess market
return and several lagged market returns run over daily data over the prior twelve
months (see Lewellen and Nagel (2004)).

Volatility Historical volatility Historical volatility calculated from daily return data over the past three months.

ShareIlliquidity Share illiquidity proxy Ratio of absolute daily return to daily trading volume averaged over the past twelve
months (see Amihud (2002)).
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Table 2
Unbiasedness Tests of the Fitted Quantiles
The table shows the proportions of future returns that lie below quantile-regression based estimates of their
quantiles. The quantile regressions are performed over rolling windows featuring the previous 20 years of
monthly data. The first window ends in December 1987, while the last window ends in December 2010. The
estimation windows are rolled forward on an annual basis. We fit the first (Pct1), fifth (Pct5), tenth (Pct10),
25th (Pct25), 50th (Pct50), 75th (Pct75), 90th (Pct90), 95th (Pct95), and 99th (Pct99) quantiles. To create
the fitted quantiles, we combine the quantile-regression estimates from the rolling window ending in December
of the previous year with the values of the explanatory variables in month t. We then compare the fitted
quantiles of the return over month t+ 1 (“monthly return;” Panel A), the return over months t+ 1 to t+ 12
(“annual return;” Panel B), and the return over months t+ 1 to t+ 60 (“five-year return;” Panel C) with
their respective return realizations. We do the comparison separately for the full sample, small stocks, illiquid
stocks, and growth stocks. Small and growth stocks are those with a market capitalization or book-to-market
ratio in the bottom quartile in month t; illiquid stocks are those with an Amihud (2002) illiquidity proxy value
in the top quartile in the same month. We estimate the quantile regressions over the January 1968-December
2010 period, but we run the unbiasedness tests over the December 1987-December 2010 period.

Proportion of Future Returns Below

Pct1 Pct5 Pct10 Q1 Median Q3 Pct90 Pct95 Pct99

Panel A: One Month-Ahead Returns

All Stocks 0.011 0.051 0.100 0.244 0.498 0.754 0.905 0.953 0.991

Small Stocks 0.011 0.052 0.101 0.245 0.503 0.759 0.903 0.951 0.989

Illiquid Stocks 0.012 0.064 0.121 0.275 0.512 0.763 0.902 0.948 0.987

Growth Stocks 0.014 0.058 0.108 0.254 0.508 0.756 0.904 0.952 0.990

Panel B: Twelve Month-Ahead Returns

All Stocks 0.018 0.064 0.112 0.243 0.475 0.720 0.869 0.919 0.961

Small Stocks 0.015 0.060 0.110 0.248 0.487 0.732 0.872 0.919 0.960

Illiquid Stocks 0.016 0.061 0.108 0.238 0.475 0.728 0.884 0.937 0.982

Growth Stocks 0.027 0.085 0.139 0.277 0.508 0.734 0.869 0.917 0.960

Panel C: Five Year-Ahead Returns

All Stocks 0.021 0.056 0.101 0.229 0.430 0.633 0.752 0.793 0.828

Small Stocks 0.017 0.038 0.076 0.208 0.421 0.641 0.761 0.800 0.835

Illiquid Stocks 0.020 0.059 0.108 0.244 0.449 0.642 0.758 0.804 0.843

Growth Stocks 0.025 0.076 0.133 0.280 0.489 0.671 0.772 0.805 0.833
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Table 3
Descriptive Statistics for Skewness Forecasts and Realized Skewness
The table reports descriptive statistics for the various stock return skewness forecasts and the realized stock
return skewness measure. The descriptive statistics contain the mean (Mean), the standard deviation (StD),
and the first (Pct1), tenth (Pct10), 25th (Pct25), 50th (Pct50), 75th (Pct75), 90th (Pct90), and 99th percentiles
(Pct99). Panel A shows descriptive statistics for the subsample of stocks with option contracts written on
them; Panel B shows descriptive statistics for the full sample. RealizedSkew is Neuberger’s (2012) realized
skewness measure; its subscript indicates the length of the period over which the stock return underlying
the measure is based. QRSkew and NaiveQRSkew are quantile-regression based skewness forecasts; their
subscripts indicate the length of the period over which the stock return underlying the measure is based.
OLSSkew is an OLS-based forecast of the realized daily stock return skewness over the next 60 months;
LogitSkew is the fitted value from a logit model explaining a dummy variable equal to one if a stock’s return
over the next twelve months exceeds 100% and else zero; HistoricalSkew is the realized daily stock return
skewness over the previous 60 months; and MaxSkew is the maximum daily return over the previous month.
See Table A.1 for details. The sample period is December 1987 to December 2010.

Mean StD Pct1 Pct10 Q1 Median Q3 Pct90 Pct99

Panel A: Stocks With Option Contracts Written on Them

Realized Skewness

RealizedSkewt+1 -0.693 3.507 -12.318 -4.225 -1.916 -0.403 0.868 2.617 7.884

RealizedSkewt+1,t+12 -0.133 0.264 -0.929 -0.458 -0.273 -0.111 0.030 0.170 0.456

RealizedSkewt+1,t+60 -0.063 0.077 -0.302 -0.153 -0.101 -0.055 -0.015 0.022 0.097

Quantile Regression-Based Skewness Forecasts

QRSkewt+1 0.220 0.339 -0.616 -0.221 0.004 0.232 0.451 0.643 0.957

QRSkewt+1,t+12 1.021 0.635 -0.673 0.192 0.629 1.061 1.452 1.817 2.299

QRSkewt+1,t+60 2.214 0.982 -0.550 0.915 1.690 2.308 2.847 3.351 4.312

Naive Quantile Regression-Based Skewness Forecasts

NaiveQRSkewt+1 0.041 0.033 -0.046 0.003 0.022 0.041 0.059 0.078 0.127

NaiveQRSkewt+1,t+12 0.095 0.067 -0.092 0.007 0.054 0.101 0.145 0.177 0.219

NaiveQRSkewt+1,t+60 0.020 0.060 -0.167 -0.063 -0.013 0.030 0.061 0.084 0.129

Other Skewness Forecasts

OLSSkew 0.645 0.397 -0.222 0.120 0.375 0.662 0.888 1.123 1.676

LogitSkew -4.971 0.797 -7.001 -6.162 -5.422 -4.840 -4.412 -4.080 -3.446

HistoricalSkew 0.241 0.801 -1.630 -0.730 -0.207 0.198 0.630 1.231 2.530

MaxSkew 0.061 0.048 0.012 0.022 0.031 0.047 0.075 0.116 0.248

Panel B: All Stocks

Quantile Regression-Based Skewness Forecasts

QRSkewt+1 0.531 0.403 -0.448 -0.004 0.252 0.557 0.827 1.028 1.361

QRSkewt+1,t+12 1.306 0.612 -0.349 0.518 0.935 1.334 1.718 2.064 2.606

QRSkewt+1,t+60 2.348 0.857 -0.214 1.241 1.884 2.467 2.907 3.281 4.145

Naive Quantile Regression-Based Skewness Forecasts

NaiveQRSkewt+1 0.026 0.047 -0.107 -0.035 0.001 0.029 0.054 0.080 0.139

NaiveQRSkewt+1,t+12 0.139 0.062 -0.052 0.057 0.103 0.148 0.183 0.210 0.248

NaiveQRSkewt+1,t+60 0.060 0.054 -0.104 -0.007 0.032 0.067 0.097 0.121 0.161

Other Skewness Forecasts

OLSSkew 1.084 0.588 -0.126 0.355 0.663 1.035 1.504 1.872 2.514

LogitSkew -4.273 1.012 -6.844 -5.610 -4.878 -4.225 -3.621 -3.034 -1.917

HistoricalSkew 0.410 0.901 -1.848 -0.588 -0.088 0.326 0.845 1.585 2.987

MaxSkew 0.087 0.084 0.000 0.022 0.036 0.061 0.106 0.179 0.444
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Table 5
Cross-Sectional Regressions of Realized Skewness on Skewness Forecasts
This table shows the results from the following cross-sectional regression:

RealizedSkew = α+ βSkewnessForecast+ ε,

whereRealizedSkew measures the realized stock return skew over the next month (RealizedSkewt+1; Panel A),
the next twelve months (RealizedSkewt+1,t+12; Panel B), or the next five years (RealizedSkewt+1,t+60;
Panel C); and SkewnessForecast ∈ (QRSkew,NaiveQRSkew,OLSSkew, LogitSkew, HistoricalSkew,
MaxSkew). QRSkew and NaiveQRSkew are quantile-regression based skewness forecasts based on the same
return frequency as the RealizedSkew variable with which they are associated; OLSSkew is an OLS-based
forecast of the realized daily stock return skewness over the next 60 months; LogitSkew is the fitted value
from a logit model explaining a dummy variable equal to one if a stock’s return over the next twelve months
exceeds 100% and else zero; HistoricalSkew is the realized daily stock return skewness over the previous 60
months; and MaxSkew is the maximum daily return over the previous month. See Table A.1 for details. α
and β are free parameters, and ε is the residual. We run the regressions separately per month. We report the
mean coefficients (in bold), their associated t-statistics (in square parentheses), the average R-squared (R̄2),
and the average R-squared’s rank (R̄2-Rank). The sample period is December 1987 to December 2010.

α β

mean est. t-stat mean est. t-stat R̄2 R̄2-Rank

Panel A: One-Month Ahead Realized Skewness

QRSkewt+1 -0.76 [-9.51] 0.45 [7.44] 0.009 1

NaiveQRSkewt+1 -0.66 [-8.78] 0.91 [1.53] 0.003 5

OLSSkew -0.81 [-9.44] 0.22 [4.75] 0.003 4

LogitSkew 0.16 [1.40] 0.16 [6.69] 0.008 2

HistoricalSkew -0.64 [-8.83] -0.10 [-7.19] 0.002 6

MaxSkew -0.75 [-9.25] 1.44 [3.65] 0.004 3

Panel B: Twelve-Month Ahead Realized Skewness

QRSkewt+1,t+12 -0.19 [-20.90] 0.07 [17.23] 0.033 1

NaiveQRSkewt+1,t+12 -0.19 [-21.29] 0.51 [16.78] 0.026 2

OLSSkew -0.16 [-20.52] 0.04 [8.62] 0.005 5

LogitSkew 0.07 [7.89] 0.04 [17.68] 0.024 3

HistoricalSkew -0.13 [-22.52] 0.00 [1.89] 0.002 6

MaxSkew -0.16 [-21.59] 0.55 [13.94] 0.013 4

Panel C: Five-Year Ahead Realized Skewness

QRSkewt+1,t+60 -0.09 [-43.71] 0.01 [33.74] 0.042 1

NaiveQRSkewt+1,t+60 -0.07 [-33.97] 0.29 [27.36] 0.029 3

OLSSkew -0.07 [-29.89] 0.01 [5.38] 0.007 5

LogitSkew 0.02 [10.34] 0.02 [35.50] 0.031 2

HistoricalSkew -0.06 [-45.88] 0.00 [6.89] 0.002 6

MaxSkew -0.07 [-44.67] 0.24 [24.22] 0.018 4
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Table 6
Average Realized Skewness By Skewness Forecast Portfolio
The table reports the realized skewness of portfolios sorted according to various skewness forecasts. Panels A to
C look at the realized skewness of the stock return measured over the next month (RealizedSkewt+1; Panel A),
the next twelve months (RealizedSkewt+1,t+12; Panel B), or the next five years (RealizedSkewt+1,t+60,
Panel C), respectively. The skewness forecasts are: QRSkew, NaiveQRSkew, OLSSkew, LogitSkew,
HistoricalSkew, and MaxSkew. QRSkew and NaiveQRSkew are quantile-regression based skewness forecasts
based on the same return frequency as the RealizedSkew variable with which they are associated; OLSSkew
is an OLS-based forecast of the realized daily stock return skewness over the next 60 months; LogitSkew is
the fitted value from a logit model explaining a dummy variable equal to one if a stock’s return over the next
twelve months exceeds 100% and else zero; HistoricalSkew is the realized daily stock return skewness over the
previous 60 months; and MaxSkew is the maximum daily return over the previous month. See Table A.1 for
more details. We form the portfolios as follows: At the end of every month t in our sample period, we sort
stocks into portfolios according to the quintile breakpoints of one of the skewness forecasts. Portfolio 1 (Low)
contains stocks with low skewness forecast values; portfolio 5 contains stocks with high skewness forecast
values. We calculate mean realized skewness by portfolio and month and then by portfolio alone. “5–1” is the
spread in mean realized skewness between portfolio 5 and 1. “Accuracy Rank” is the rank of the spread. The
sample period is December 1987 to December 2010.

Skewness Forecast Deciles Accuracy

Skewness Forecast 1 (Low) 2 3 4 5 (High) 5–1 Rank

Panel A: One-Month Ahead Realized Skewness

QRSkewt+1 -0.835 -0.759 -0.613 -0.542 -0.431 0.404 1

NaiveQRSkewt+1 -0.666 -0.615 -0.613 -0.650 -0.638 0.028 5

OLSSkew -0.710 -0.693 -0.692 -0.716 -0.513 0.197 4

LogitSkew -0.804 -0.721 -0.695 -0.599 -0.429 0.375 2

HistoricalSkew -0.590 -0.645 -0.663 -0.630 -0.777 -0.188 6

MaxSkew -0.894 -0.706 -0.627 -0.536 -0.541 0.353 3

Panel B: Twelve-Month Ahead Realized Skewness

QRSkewt+1,t+12 -0.175 -0.146 -0.131 -0.103 -0.066 0.109 1

NaiveQRSkewt+1,t+12 -0.176 -0.143 -0.127 -0.102 -0.074 0.102 2

OLSSkew -0.132 -0.140 -0.134 -0.140 -0.102 0.030 5

LogitSkew -0.173 -0.140 -0.132 -0.116 -0.079 0.093 3

HistoricalSkew -0.129 -0.132 -0.132 -0.129 -0.124 0.004 6

MaxSkew -0.164 -0.148 -0.130 -0.111 -0.093 0.071 4

Panel C: Five-Year Ahead Realized Skewness

QRSkewt+1,t+60 -0.076 -0.064 -0.060 -0.050 -0.038 0.038 1

NaiveQRSkewt+1,t+60 -0.076 -0.063 -0.057 -0.051 -0.040 0.036 3

OLSSkew -0.059 -0.061 -0.064 -0.066 -0.051 0.009 5

LogitSkew -0.076 -0.066 -0.061 -0.055 -0.038 0.038 2

HistoricalSkew -0.060 -0.062 -0.062 -0.059 -0.056 0.004 6

MaxSkew -0.072 -0.070 -0.062 -0.053 -0.043 0.028 4
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Table 8
Portfolio Formation Exercises Based on Skewness Forecasts
The table reports the mean returns of portfolios sorted according to the various skewness forecasts. Panel A
uses quantile-regression based skewness forecasts implied from fitted moments as sorting variables; Panel B
uses those directly calculated from quantile estimates. In both panels, the subscripts indicate the length of
the period over which the stock return underlying the skewness forecast is based. Panel C uses the alternative
skewness forecasts as sorting variable. OLSSkew is an OLS-based forecast of the realized daily stock return
skewness over the next 60 months; LogitSkew is the fitted value from a logit model explaining a dummy
variable equal to one if a stock’s return over the next twelve months exceeds 100% and else zero; HistoricalSkew
is the realized daily stock return skewness over the previous 60 months; and MaxSkew is the maximum daily
return over the previous month. See Table A.1 for more details. We form the portfolios as follows: At the end
of every month t in our sample period, we sort stocks into portfolios according to the quintile breakpoints of
one of the skewness forecasts. Portfolio 1 (Low) contains stocks with low skewness forecast values; portfolio 5
contains stocks with high skewness forecast values. We value-weight the portfolios and hold them over the
next month. We also form a spread portfolio long on portfolio 5 and short on portfolio 1 (“5–1”). We report
the mean return, the Q-factor model alpha, and the Fama-French (2015) five-factor model alpha of the spread
portfolio under “raw,” “Q,” and “FF5,” respectively. The alphas are computed from time-series regressions of
the spread portfolio return on the relevant benchmark factors. Mean returns are per month and in percentage;
t-statistics are calculated using the Newey and West (1987) formula with a lag length of twelve months and
are in square parentheses. The sample period is December 1987 to December 2010.

Skewness Forecast Deciles 5–1

Skewness Forecast 1 (Low) 2 3 4 5 (High) raw Q FF5

Panel A: Quantile Regression-Based Skewness Forecasts

QRSkewt+1 0.930 0.948 0.910 0.859 0.681 -0.250 0.193 -0.042

[3.38] [2.28] [2.03] [1.59] [1.20] [-0.59] [1.00] [-0.21]

QRSkewt+1,t+12 0.937 1.002 1.201 0.918 0.488 -0.449 0.169 -0.046

[3.62] [2.55] [2.46] [1.59] [0.74] [-0.84] [0.48] [-0.20]

QRSkewt+1,t+60 0.888 1.113 1.144 1.177 1.103 0.215 0.563 0.498

[3.53] [3.20] [2.59] [2.55] [1.78] [0.44] [1.32] [1.14]

Panel B: Nave Quantile Regression-Based Skewness Forecasts

NaiveQRSkewt+1 0.990 0.961 1.101 0.923 0.844 -0.147 0.057 0.012

[2.70] [2.89] [3.29] [2.90] [3.26] [-0.61] [0.26] [0.06]

NaiveQRSkewt+1,t+12 0.946 1.009 1.287 0.927 0.340 -0.606 -0.221 -0.237

[3.58] [2.60] [2.69] [1.55] [0.52] [-1.22] [-0.54] [-0.88]

NaiveQRSkewt+1,t+60 0.911 0.984 1.031 0.958 0.981 0.071 0.324 0.276

[3.25] [2.65] [2.55] [2.32] [2.02] [0.21] [1.22] [1.21]

Panel C: Other Skewness Forecasts

OLSSkew 1.094 0.795 0.840 0.677 0.390 -0.704 -0.279 -0.562

[3.76] [2.26] [2.26] [1.75] [0.82] [-2.02] [-0.97] [-1.65]

LogitSkew 0.931 1.078 0.863 0.762 0.328 -0.602 -0.117 -0.277

[3.28] [2.80] [1.75] [1.37] [0.51] [-1.17] [-0.49] [-0.97]

HistoricalSkew 1.057 0.958 0.920 0.782 0.766 -0.290 -0.205 -0.209

[3.86] [3.10] [3.01] [2.14] [2.13] [-1.82] [-1.51] [-1.52]

MaxSkew 1.003 0.968 1.011 0.767 0.443 -0.560 -0.045 -0.189

[4.39] [3.31] [2.74] [1.42] [0.72] [-1.11] [-0.13] [-0.91]
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Table 9
Spreads From Portfolio Formation Exercises Based on Skewness Forecast Combinations
The table reports the mean returns of spread portfolios long on stocks with high values for various skewness-
forecast combinations and short on stocks with low values for them. The column labels indicate the quantile-
regression based skewness forecast used in the combination; the row labels indicate with which other skewness
forecast(s) the quantile-regression based forecast is combined. To combine the skewness forecasts, we estimate
the cross-sectional NLS regression in Equation (20). As endogenous variable we use RealizedSkew measured
using the same return interval as QRSkew and calculated with data running up to month t. We convert all
regression variables into standard normal variables before estimation. We use the weights from the regression
in conjunction with the month t values of the (standardized) skewness forecasts to calculate the forecast
combination. The only exception occurs in row “all (equal-weights),” in which we report the results from
equally-weighting the forecasts. QRSkew and NaiveQRSkew are quantile-regression based skewness forecasts;
their subscripts indicate the length of the period over which the stock return underlying the measure is based.
OLSSkew is an OLS-based forecast of the realized daily stock return skewness over the next 60 months;
LogitSkew is the fitted value from a logit model explaining a dummy variable equal to one if a stock’s return
over the next twelve months exceeds 100% and else zero; HistoricalSkew is the realized daily stock return
skewness over the previous 60 months; and MaxSkew is the maximum daily return over the previous month.
See Table A.1 for details. We form the spread portfolios as follows: At the end of every month t in our sample
period, we sort stocks into portfolios according to the quintile breakpoints of one of the forecast combinations.
Portfolio 1 (Low) contains stocks with low forecast combination values; portfolio 5 contains stocks with
high forecast combination values. We value-weight the portfolios and hold them over the next month. The
spread portfolio is long on portfolio 5 and short on portfolio 1. We report the mean return, the Q-factor
model alpha, and the Fama-French (2015) five-factor model alpha of the spread portfolio under “Raw Spread,”
“Q-Adjusted Spread,” and “FF5-Adjusted Spread,” respectively. The alphas are computed from time-series
regressions of the spread portfolio return on the relevant benchmark factors. Mean returns are per month and
in percentage; t-statistics (in square parentheses) are calculated using the Newey and West (1987) formula
with a lag length of twelve months. The sample period is December 1987 to December 2010.

Raw Spread Q-Adjusted Spread FF5-Adjusted Spread

QRSkew QRSkew QRSkew QRSkew QRSkew QRSkew QRSkew QRSkew QRSkew

Combined With: t+1 t+1,t+12 t+1,t+60 t+1 t+1,t+12 t+1,t+60 t+1 t+1,t+12 t+1,t+60

OLSSkew -0.184 -0.389 -0.420 0.220 0.270 0.042 -0.045 -0.014 -0.038

[-0.41] [-0.78] [-0.79] [0.90] [1.12] [0.09] [-0.14] [-0.05] [-0.13]

LogitSkew -0.236 -0.456 -0.482 0.451 0.305 0.180 0.074 -0.002 0.043

[-0.46] [-0.82] [-0.79] [1.71] [1.11] [0.34] [0.26] [-0.01] [0.13]

HistoricalSkew -0.057 -0.282 0.134 0.195 0.167 0.694 0.033 0.053 0.626

[-0.21] [-0.69] [0.27] [1.51] [0.68] [1.74] [0.31] [0.42] [2.97]

MaxSkew -0.241 -0.499 0.225 0.253 0.172 0.588 -0.022 -0.020 0.538

[-0.50] [-0.89] [0.46] [1.17] [0.48] [1.39] [-0.09] [-0.09] [2.28]

all (reg-weights) -0.290 -0.509 -0.665 0.383 0.123 0.081 0.056 -0.108 -0.076

[-0.59] [-0.97] [-1.09] [1.54] [0.49] [0.17] [0.21] [-0.48] [-0.32]

all (equal-weights) -0.367 -0.483 -0.625 0.106 0.065 0.008 -0.116 -0.139 -0.076

[-0.83] [-1.00] [-1.21] [0.54] [0.27] [0.03] [-0.64] [-0.71] [-0.32]
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Table 11
Fama-MacBeth Regressions of Future Returns on Skew Forecast Combinations and Controls
The table shows the risk premium estimates of various skewness forecast combinations. We obtain the estimates
from Fama-MacBeth (1973) regressions of stock returns on the skewness forecast combinations and control
variables. The column labels indicate the quantile-regression based skewness forecast used in the combination;
the row labels indicate with which other skewness forecast(s) the quantile-regression based forecast is combined.
To combine the skewness forecasts, we estimate the cross-sectional NLS regression in Equation (20). As
endogenous variable we use RealizedSkew measured using the same return interval as QRSkew and calculated
with data running up to month t. We convert all regression variables into standard normal variables before
estimation. We use the weights from the regression in conjunction with the month t values of the (standardized)
skewness forecasts to calculate the forecast combination. The only exception occurs in row “all (equal-weights),”
in which we report the results from equally-weighting the forecasts. QRSkew is a quantile-regression based
skewness forecast; its subscript indicates the length of the period over which the stock return underlying the
measure is based. OLSSkew is an OLS-based forecast of the realized daily stock return skewness over the
next 60 months; LogitSkew is the fitted value from a logit model explaining a dummy variable equal to one
if a stock’s return over the next twelve months exceeds 100% and else zero; HistoricalSkew is the realized
daily stock return skewness over the previous 60 months; and MaxSkew is the maximum daily return over
the previous month. The control variables are MarketBeta, BookToMarket, Momentum, AssetGrowth,
Profitability, and V olatility. See Table A.1 for details. Estimates (in bold) are per month and in percentage.
T-statistics (in square parentheses) are calculated using the Newey and West (1987) formula with a lag length
of twelve months. The sample period is December 1987 to December 2010.

QRSkew QRSkew QRSkew

Combined With: t+1 t+1,t+12 t+1,t+60

OLSSkew -0.029 0.366 0.218

[-0.10] [1.21] [0.91]

LogitSkew 0.077 0.272 -0.015

[0.24] [0.78] [-0.08]

HistoricalSkew -0.016 0.153 0.089

[-0.13] [0.92] [0.64]

MaxSkew -0.172 0.384 0.129

[-0.26] [1.43] [0.61]

all others (reg-weights) 0.422 0.574 0.337

[1.02] [1.46] [1.01]

all others (equal-weights) 0.146 0.294 0.249

[0.53] [1.01] [0.83]

Controls YES YES YES
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